Event Extraction as Dependency Parsing
نویسندگان
چکیده
Nested event structures are a common occurrence in both open domain and domain specific extraction tasks, e.g., a “crime” event can cause a “investigation” event, which can lead to an “arrest” event. However, most current approaches address event extraction with highly local models that extract each event and argument independently. We propose a simple approach for the extraction of such structures by taking the tree of event-argument relations and using it directly as the representation in a reranking dependency parser. This provides a simple framework that captures global properties of both nested and flat event structures. We explore a rich feature space that models both the events to be parsed and context from the original supporting text. Our approach obtains competitive results in the extraction of biomedical events from the BioNLP’09 shared task with a F1 score of 53.5% in development and 48.6% in testing.
منابع مشابه
Event Extraction as Dependency Parsing for BioNLP 2011
We describe the Stanford entry to the BioNLP 2011 shared task on biomolecular event extraction (Kim et al., 2011a). Our framework is based on the observation that event structures bear a close relation to dependency graphs. We show that if biomolecular events are cast as these pseudosyntactic structures, standard parsing tools (maximum-spanning tree parsers and parse rerankers) can be applied t...
متن کاملSyntactic Dependency Based Heuristics for Biological Event Extraction
We explore a rule-based methodology for the BioNLP’09 Shared Task on Event Extraction, using dependency parsing as the underlying principle for extracting and characterizing events. We approach the speculation and negation detection task with the same principle. Evaluation results demonstrate the utility of this syntax-based approach and point out some shortcomings that need to be addressed in ...
متن کاملEvaluating Dependency Representations for Event Extraction
The detailed analyses of sentence structure provided by parsers have been applied to address several information extraction tasks. In a recent bio-molecular event extraction task, state-of-the-art performance was achieved by systems building specifically on dependency representations of parser output. While intrinsic evaluations have shown significant advances in both general and domain-specifi...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملFeature extraction in opinion mining through Persian reviews
Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011